Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models.
نویسندگان
چکیده
Here, we systematically investigated how the force fields and the partial charge models for ligands affect the ranking performance of the binding free energies predicted by the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) approaches. A total of 46 small molecules targeted to five different protein receptors were employed to test the following issues: (1) the impact of five AMBER force fields (ff99, ff99SB, ff99SB-ILDN, ff03, and ff12SB) on the performance of MM/GBSA, (2) the influence of the time scale of molecular dynamics (MD) simulations on the performance of MM/GBSA with different force fields, (3) the impact of five AMBER force fields on the performance of MM/PBSA, and (4) the impact of four different charge models (RESP, ESP, AM1-BCC, and Gasteiger) for small molecules on the performance of MM/PBSA or MM/GBSA. Based on our simulation results, the following important conclusions can be obtained: (1) for short time-scale MD simulations (1 ns or less), the ff03 force field gives the best predictions by both MM/GBSA and MM/PBSA; (2) for middle time-scale MD simulations (2-4 ns), MM/GBSA based on the ff99 force field yields the best predictions, while MM/PBSA based on the ff99SB force field does the best; however, longer MD simulations, for example, 5 ns or more, may not be quite necessary; (3) for most cases, MM/PBSA with the Tan's parameters shows better ranking capability than MM/GBSA (GB(OBC1)); (4) the RESP charges show the best performance for both MM/PBSA and MM/GBSA, and the AM1-BCC and ESP charges can also give fairly satisfactory predictions. Our results provide useful guidance for the practical applications of the MM/GBSA and MM/PBSA approaches.
منابع مشابه
Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring.
With the rapid development of computational techniques and hardware, more rigorous and precise theoretical models have been used to predict the binding affinities of a large number of small molecules to biomolecules. By employing continuum solvation models, the MM/GBSA and MM/PBSA methodologies achieve a good balance between low computational cost and reasonable prediction accuracy. In this stu...
متن کاملAssessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set.
By using different evaluation strategies, we systemically evaluated the performance of Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) methodologies based on more than 1800 protein-ligand crystal structures in the PDBbind database. The results can be summarized as follows: (1) for the one-protein-family/one-binding-lig...
متن کاملThe MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities
INTRODUCTION The molecular mechanics energies combined with the Poisson-Boltzmann or generalized Born and surface area continuum solvation (MM/PBSA and MM/GBSA) methods are popular approaches to estimate the free energy of the binding of small ligands to biological macromolecules. They are typically based on molecular dynamics simulations of the receptor-ligand complex and are therefore interme...
متن کاملAssessing the Performance of the MM/PBSA and MM/GBSA Methods. 1. The Accuracy of Binding Free Energy Calculations Based on Molecular Dynamics Simulations
The Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) and the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) methods calculate binding free energies for macromolecules by combining molecular mechanics calculations and continuum solvation models. To systematically evaluate the performance of these methods, we report here an extensive study of 59 ligands interacting with s...
متن کاملAssessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking
In molecular docking, it is challenging to develop a scoring function that is accurate to conduct high-throughput screenings. Most scoring functions implemented in popular docking software packages were developed with many approximations for computational efficiency, which sacrifices the accuracy of prediction. With advanced technology and powerful computational hardware nowadays, it is feasibl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 117 28 شماره
صفحات -
تاریخ انتشار 2013